Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neuropathol Exp Neurol ; 83(3): 144-160, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323418

RESUMEN

The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.


Asunto(s)
Muerte Súbita del Lactante , Lactante , Animales , Humanos , Anciano , Bulbo Raquídeo/metabolismo , Serotonina/metabolismo , Receptores de Serotonina/metabolismo
2.
J Neurosci ; 37(7): 1807-1819, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28073937

RESUMEN

Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei.SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic tools, we characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons), mapping soma localization to the caudal medulla primarily and axonal projections to brainstem motor nuclei most prominently, and, when silenced, observed blunting of the ventilatory response to inhaled CO2Tac1-Pet1 neurons thus appear distinct from and contrast previously described Egr2-Pet1 neurons, which project primarily to chemosensory integration centers and are themselves chemosensitive.


Asunto(s)
Lectinas/metabolismo , Neuronas/fisiología , Núcleos del Rafe/citología , Respiración , Factores de Transcripción/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Dióxido de Carbono/farmacología , Colina O-Acetiltransferasa/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Lectinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Núcleos del Rafe/metabolismo , Respiración/efectos de los fármacos , Serotonina/metabolismo , Factores de Transcripción/genética , Tirosina 3-Monooxigenasa/metabolismo
3.
J Neurosci ; 36(14): 3943-53, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053202

RESUMEN

Sudden infant death syndrome (SIDS) cases often have abnormalities of the brainstem raphe serotonergic (5-HT) system. We hypothesize that raphe dysfunction contributes to a failure to autoresuscitate from multiple hypoxic events, leading to SIDS. We studied autoresuscitation in two transgenic mouse models in which exocytic neurotransmitter release was impaired via conditional expression of the light chain from tetanus toxin (tox) in raphe neurons expressing serotonergic bacterial artificial chromosome drivers Pet1 or Slc6a4. These used recombinase drivers targeted different portions of medullary raphe serotonergic, tryptophan hydroxylase 2 (Tph2)(+) neurons by postnatal day (P) 5 through P12: approximately one-third in triple transgenic Pet1::Flpe, hßactin::cre, RC::PFtox mice; approximately three-fourths inSlc6a4::cre, RC::Ptox mice; with the first model capturing a near equal number of Pet1(+),Tph2(+) versus Pet1(+),Tph2(low or negative) raphe cells. At P5, P8, and P12, "silenced" mice and controls were exposed to five, ∼37 s bouts of anoxia. Mortality was 5-10 times greater in "silenced" pups compared with controls at P5 and P8 (p = 0.001) but not P12, with cumulative survival not differing between experimental transgenic models. "Silenced" pups that eventually died took longer to initiate gasping (p = 0.0001), recover heart rate (p = 0.0001), and recover eupneic breathing (p = 0.011) during the initial anoxic challenges. Variability indices for baseline breathing distinguished "silenced" from controls but did not predict mortality. We conclude that dysfunction of even a portion of the raphe, as observed in many SIDS cases, can impair ability to autoresuscitate at critical periods in postnatal development and that baseline indices of breathing variability can identify mice at risk. SIGNIFICANCE STATEMENT: Many sudden infant death syndrome (SIDS) cases exhibit a partial (∼26%) brainstem serotonin deficiency. Using recombinase drivers, we targeted different fractions of serotonergic and raphe neurons in mice for tetanus toxin light chain expression, which prevented vesicular neurotransmitter release. In one model, approximately one-third of medullary Tph2(+) neurons are silenced by postnatal (P) days 5 and 12, along with some Pet1(+),Tph2(low or negative) raphe cells; in the other, approximately three-fourths of medullary Tph2(+) neurons, also with some Tph2(low or negative) cells. Both models demonstrated excessive mortality to anoxia (a postulated SIDS stressor) at P5 and P8. We demonstrated fatal vulnerability to anoxic stress at a specific time in postnatal life induced by a partial defect in raphe function. This models features of SIDS.


Asunto(s)
Período Crítico Psicológico , Hipoxia/mortalidad , Hipoxia/fisiopatología , Núcleos del Rafe/fisiopatología , Transmisión Sináptica , Envejecimiento/psicología , Animales , Animales Recién Nacidos , Silenciador del Gen , Frecuencia Cardíaca , Humanos , Recién Nacido , Ratones , Ratones Transgénicos , Núcleos del Rafe/efectos de los fármacos , Mecánica Respiratoria , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Muerte Súbita del Lactante , Transmisión Sináptica/efectos de los fármacos , Toxina Tetánica/toxicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
4.
J Physiol ; 594(17): 4967-80, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27061304

RESUMEN

KEY POINTS: Activation of central chemoreceptors by CO2 increases sympathetic nerve activity (SNA), arterial blood pressure (ABP) and breathing. These effects are exaggerated in spontaneously hypertensive rats (SHRs), resulting in an augmented CO2 chemoreflex that affects both breathing and ABP. The augmented CO2 chemoreflex and the high ABP are measureable in young SHRs (postnatal day 30-58) and become greater in adult SHRs. Blockade of orexin receptors can normalize the augmented CO2 chemoreflex and the high ABP in young SHRs and normalize the augmented CO2 chemoreflex and significantly lower the high ABP in adult SHRs. In the hypothalamus, SHRs have more orexin neurons, and a greater proportion of them increase their activity with CO2 . The orexin system is overactive in SHRs and contributes to the augmented CO2 chemoreflex and hypertension. Modulation of the orexin system may be beneficial in the treatment of neurogenic hypertension. ABSTRACT: Activation of central chemoreceptors by CO2 increases arterial blood pressure (ABP), sympathetic nerve activity and breathing. In spontaneously hypertensive rats (SHRs), high ABP is associated with enhanced sympathetic nerve activity and peripheral chemoreflexes. We hypothesized that an augmented CO2 chemoreflex and overactive orexin system are linked with high ABP in both young (postnatal day 30-58) and adult SHRs (4-6 months). Our main findings are as follows. (i) An augmented CO2 chemoreflex and higher ABP in SHRs are measureable at a young age and increase in adulthood. In wakefulness, the ventilatory response to normoxic hypercapnia is higher in young SHRs (mean ± SEM: 179 ± 11% increase) than in age-matched normotensive Wistar-Kyoto rats (114 ± 9% increase), but lower than in adult SHRs (226 ± 10% increase; P < 0.05). The resting ABP is higher in young SHRs (122 ± 5 mmHg) than in age-matched Wistar-Kyoto rats (99 ± 5 mmHg), but lower than in adult SHRs (152 ± 4 mmHg; P < 0.05). (ii) Spontaneously hypertensive rats have more orexin neurons and more CO2 -activated orexin neurons in the hypothalamus. (iii) Antagonism of orexin receptors with a dual orexin receptor antagonist, almorexant, normalizes the augmented CO2 chemoreflex in young and adult SHRs and the high ABP in young SHRs and significantly lowers ABP in adult SHRs. (iv) Attenuation of peripheral chemoreflexes by hyperoxia does not abolish the augmented CO2 chemoreflex (breathing and ABP) in SHRs, which indicates an important role for the central chemoreflex. We suggest that an overactive orexin system may play an important role in the augmented central CO2 chemoreflex and in the development of hypertension in SHRs.


Asunto(s)
Dióxido de Carbono/fisiología , Hipertensión/fisiopatología , Orexinas/fisiología , Animales , Presión Arterial , Hipercapnia/fisiopatología , Hipotálamo/fisiología , Masculino , Neuronas/fisiología , Ventilación Pulmonar , Ratas Endogámicas SHR , Ratas Endogámicas WKY
5.
Cancer Biol Ther ; 15(5): 643-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24556704

RESUMEN

G 0/G 1 switch gene 2 (G0S2) is a protein that was first identified in a search for lymphocyte G 0/G 1 switch genes. A direct role for G0S2 in cell cycle regulation has proven elusive. Yet, there is prior evidence for G0S2 functioning in tumor suppression, immune regulation and lipolysis. To explore definitively G0S2 functions, mice lacking G0S2 were generated and characterized. G0S2(-/-) mice were born at a Mendelian ratio and were phenotypically normal, with the exception of a possible lactation defect. G0S2(-/-) female mice carried viable pups to term, but could not typically sustain them beyond 48 h. G0S2 is shown here to be most highly expressed in adipose tissue. It is also expressed in liver, skeletal muscle, lung, ventricles of the heart, and components of the kidney. G0S2 loss significantly decreased relative body weight gain as compared with wild-type (WT) (G0S2(+/+)) mice, with a significant decrease in gonadal fat pad weight and a significant increase in serum glycerol levels. This decreased relative body weight gain is not associated with a significant decrease in food intake or increase in activity of G0S2(-/-) mice. In fact, G0S2(-/-) mice were significantly less active at night than G0S2(+/+) mice. When fed with a high fat diet (45% fat diet), G0S2 loss did not prevent diet-induced obesity in mice. Intriguingly, G0S2 loss improved acute cold tolerance, augmenting expression of genes involved in thermogenesis. In summary, in vivo roles for G0S2 were found in lactation, energy balance, and thermogenesis. This study provides a basis for tumor suppressive effects of G0S2 by regulating lipolysis.


Asunto(s)
Peso Corporal/genética , Proteínas de Ciclo Celular/genética , Frío , Termogénesis/genética , Tejido Adiposo/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Dieta , Ingestión de Alimentos , Ácidos Grasos/metabolismo , Femenino , Glicerol/sangre , Lactancia/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/genética , Especificidad de Órganos , Oxidación-Reducción , Oxígeno/metabolismo , Factores Sexuales
7.
J Physiol ; 591(17): 4237-48, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23671161

RESUMEN

In normal rats, central administration of orexin or exposure to certain forms of stress can induce significant increases in blood pressure and sympathetic nerve activity, which can be blocked by orexin receptor antagonists. The resting blood pressure is, however, unaffected by such antagonists, but is significantly lower in rodents with total loss of orexin, such as prepro-orexin knockout mice and orexin neuron-ablated orexin/ataxin-3 transgenic rats. We hypothesize that orexin is involved in the pathophysiology and maintenance of high blood pressure in the spontaneously hypertensive rat (SHR), a model of primary hypertension. To test this hypothesis, we measured orexin-A mRNA expression in the rostral ventrolateral medulla and antagonized both orexin receptors using an orally administered potent dual orexin receptor antagonist, almorexant, in SHRs and normotensive Wistar-Kyoto rats. In SHRs, there was a strong trend towards an increased orexin-A mRNA expression in the rostral ventrolateral medulla, and blocking orexin receptors markedly lowered blood pressure (from 182/152 ± 5/6 to 149/119 ± 9/8 mmHg; P < 0.001), heart rate (P < 0.001), sympathetic vasomotor tone (P < 0.001) and the noradrenaline levels in cerebrospinal fluid and plasma (P < 0.002). The significant antihypertensive effects of almorexant were observed in wakefulness and non-rapid eye movement sleep during both dark and light phases of the diurnal cycle only in SHRs. Blocking orexin receptors had no effect on blood pressure and sympathetic tone in normotensive Wistar-Kyoto rats. Our study links the orexin system to the pathogenesis of high blood pressure in SHRs and suggests that modulation of the orexin system could be a potential target in treating some forms of hypertension.


Asunto(s)
Presión Sanguínea , Hipertensión/metabolismo , Receptores de Orexina/metabolismo , Acetamidas/farmacología , Animales , Hipertensión/genética , Isoquinolinas/farmacología , Bulbo Raquídeo/metabolismo , Norepinefrina/sangre , Norepinefrina/líquido cefalorraquídeo , Antagonistas de los Receptores de Orexina , Receptores de Orexina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
8.
J Neurochem ; 126(6): 749-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23692315

RESUMEN

The sudden infant death syndrome is associated with a reduction in brainstem serotonin 5-hydroxytryptamine (5-HT) and 5-HT(1A) receptor binding, yet it is unknown if and how these findings are linked. In this study, we used quantitative tissue autoradiography to determine if post-natal development of brainstem 5-HT(1A) receptors is altered in two mouse models where the development of 5-HT neurons is defective, the Lmx1b(f/f/p) , and the Pet-1⁻/⁻ mouse. 5-HT(1A) receptor agonist-binding sites were examined in both 5-HT-source nuclei (autoreceptors) and in sites that receive 5-HT innervation (heteroreceptors). In control mice between post-natal day (P) 3 and 10, 5-HT(1A) receptor binding increased in several brainstem sites; by P25, there were region-specific increases and decreases, refining the overall binding pattern. In the Lmx1b(f/f/p) and Pet-1⁻/⁻ mice, 5-HT(1A)-autoreceptor binding was significantly lower than in control mice at P3, and remained low at P10 and P25. In contrast, 5-HT(1A) heteroreceptor levels were comparable between control and 5-HT-deficient mice. These data define the post-natal development of 5-HT(1A)-receptor binding in the mouse brainstem. Furthermore, the data suggest that 5-HT(1A)-heteroreceptor deficits detected in sudden infant death syndrome are not a direct consequence of a 5-HT neuron dysfunction nor reduced brain 5-HT levels. To elucidate the developmental relationship between serotonin (5-HT) levels and 5-HT(1A) receptors in the brainstem, we examined 5-HT(1A) binding in two 5-HT-deficient mouse models. In nuclei containing 5-HT neurons, 5-HT(1A) binding was decreased (autoreceptors), while binding was maintained in projection sites (heteroreceptors). Thus, brainstem 5-HT(1A)-heteroreceptor-binding sites do not appear developmentally sensitive to reduced brain 5-HT levels.


Asunto(s)
Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/deficiencia , Envejecimiento/metabolismo , Animales , Autorradiografía , Sitios de Unión , Interpretación Estadística de Datos , Genotipo , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Noqueados , Núcleos del Rafe/metabolismo , Factores de Transcripción/genética
9.
Pediatr Res ; 73(1): 38-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23095976

RESUMEN

BACKGROUND: In neonatal rodents, serotonin (5-HT) neurons are critical for successful autoresuscitation. We hypothesized that caffeine, a respiratory stimulant, would hasten the onset of gasping and improve autoresuscitation in 5-HT-deficient, Pet-1(-/-) mice. METHODS: Using a head-out system and electrocardiogram, we measured respiratory and heart rate (HR) responses of Pet-1(-/-) rodents and their littermates during episodic asphyxia at postnatal days 8-9 (P8-9). After a baseline recording, we injected either vehicle or caffeine (i.p.) at doses of 1, 5, or 10 mg/kg. We then induced 10 brief (~30 s) episodes of asphyxia, each interspersed with 5 min of room air to allow autoresuscitation. In addition to measuring survival, we measured the duration of hypoxic apnea (time to initiate gasping) and time to recover eupnea and HR. RESULTS: Caffeine had a dose-dependent effect of hastening the onset of gasping, recovery of breathing, and restoration of HR in Pet-1(-/-) (but not in wild-type) rodents, thereby improving survival across asphyxic episodes. Increased survival was strongly correlated with hastened onset of gasping. CONCLUSION: Our data suggest that caffeine reduces mortality relating to asphyxia and 5-HT deficiency. These findings may be relevant for efforts to reduce the incidence of sudden infant death syndrome (SIDS), given that SIDS is associated with failed autoresuscitation and reduced brainstem 5-HT.


Asunto(s)
Asfixia/tratamiento farmacológico , Cafeína/farmacología , Respiración/efectos de los fármacos , Serotonina/deficiencia , Factores de Transcripción/genética , Análisis de Varianza , Animales , Cafeína/uso terapéutico , Cartilla de ADN/genética , Electrocardiografía , Genotipo , Frecuencia Cardíaca/efectos de los fármacos , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa
10.
Brain Res ; 1511: 115-25, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23261662

RESUMEN

`The early growth response 2 transcription factor, Egr2, establishes a population of brainstem neurons essential for normal breathing at birth. Egr2-null mice die perinatally of respiratory insufficiency characterized by subnormal respiratory rate and severe apneas. Here we bypass this lethality using a noninvasive pharmacogenetic approach to inducibly perturb neuron activity postnatally, and ask if Egr2-neurons control respiration in adult mice. We found that the normal ventilatory increase in response to elevated tissue CO2 was impaired, blunted by 63.1 ± 8.7% after neuron perturbation due to deficits in both respiratory amplitude and frequency. By contrast, room-air breathing was unaffected, suggesting that the drive for baseline breathing may not require those Egr2-neurons manipulated here. Of the multiple brainstem sites proposed to affect ventilation in response to hypercapnia, only the retrotrapezoid nucleus, a portion of the serotonergic raphé, and a portion of the A5 nucleus have a history of Egr2 expression. We recently showed that acute inhibition of serotonergic neurons en masse blunts the CO2 chemoreflex in adults, causing a difference in hypercapnic response of ∼50% after neuron perturbation through effects on respiratory amplitude only. The suppressed respiratory frequency upon perturbation of Egr2-neurons thus may stem from non-serotonergic neurons within the Egr2 domain. Perturbation of Egr2-neurons did not affect body temperature, even on exposure to ambient 4°C. These findings support a model in which Egr2-neurons are a critical component of the respiratory chemoreflex into adulthood. Methodologically, these results highlight how pharmacogenetic approaches allow neuron function to be queried in unanesthetized adult animals, reaching beyond the roadblocks of developmental lethality and compensation as well as the anatomical disturbances associated with invasive methods. This article is part of a Special Issue entitled Optogenetics (7th BRES).


Asunto(s)
Tronco Encefálico/patología , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Hipercapnia/patología , Neuronas/metabolismo , Respiración/genética , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Dióxido de Carbono/farmacología , Frío , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Ratones , Neuronas/efectos de los fármacos , Respiración/efectos de los fármacos , Termogénesis/genética
11.
J Appl Physiol (1985) ; 113(10): 1585-93, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22936722

RESUMEN

We hypothesized that absence of the 5-HT(1A) receptor would negatively affect the development of cardiorespiratory control. In conscious wild type (WT) and 5-HT(1A) receptor knockout (KO) mice, we measured resting ventilation (Ve), oxygen consumption (Vo(2)), heart rate (HR), breathing and HR variability, and the hypercapnic ventilatory response (HCVR) at postnatal day 5 (P5), day 15 (P15), and day 25 (P25). In KO mice compared with WT, we found a 17% decrease in body weight at only P5 (P < 0.01) and no effect on Vo(2). Ve was significantly (P < 0.001) lower at P5 and P25, but there was no effect on the HCVR. Breathing variability (interbreath interval), measured by standard deviation, the root mean square of the standard deviation (RMSSD), and the product of the major (L) and minor axes (T) of the Poincaré first return plot, was 57% to 187% higher only at P5 (P < 0.001). HR was 6-10% slower at P5 (P < 0.001) but 7-9% faster at P25 (P < 0.001). This correlated with changes in the spectral analysis of HR variability; the low frequency to high frequency ratio was 47% lower at P5 but 68% greater at P25. The RMSSD and (L × T) of HR variability were ~2-fold greater at P5 only (P < 0.001; P < 0.05). We conclude that 5-HT(1A) KO mice have a critical period of potential vulnerability at P5 when pups hypoventilate and have a slower respiratory frequency and HR with enhanced variability of both, suggesting abnormal maturation of cardiorespiratory control.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Tronco Encefálico/metabolismo , Frecuencia Cardíaca , Corazón/inervación , Pulmón/inervación , Receptor de Serotonina 5-HT1A/deficiencia , Respiración , Frecuencia Respiratoria , Animales , Animales Recién Nacidos , Sistema Nervioso Autónomo/fisiopatología , Peso Corporal , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/fisiopatología , Tronco Encefálico/fisiopatología , Metabolismo Energético , Femenino , Genotipo , Frecuencia Cardíaca/genética , Humanos , Hipercapnia/genética , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Hiperventilación/genética , Hiperventilación/metabolismo , Hiperventilación/fisiopatología , Lactante , Recién Nacido , Masculino , Ratones , Ratones Noqueados , Consumo de Oxígeno , Fenotipo , Ventilación Pulmonar , Receptor de Serotonina 5-HT1A/genética , Respiración/genética , Frecuencia Respiratoria/genética , Muerte Súbita del Lactante/genética
12.
Forensic Sci Med Pathol ; 8(4): 414-25, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22941540

RESUMEN

Reported here are the proceedings of a symposium given in honor of Dr. Henry F. Krous upon his retirement as Clinical Professor of Pathology and Pediatrics at the University of California Schools of Medicine, and as Director of the San Diego SIDS/SUDC Research Project. Dr. Krous' distinguished 37-year-career was dedicated to research into sudden unexpected death in infancy and childhood, notably the sudden infant death syndrome (SIDS) and sudden unexplained death in childhood (SUDC). The presentations were given at the International Conference on Stillbirth, SIDS, and infant survival on October 5, 2012, in Baltimore, MD, USA. Eight colleagues of Dr. Krous whose own professional careers were touched by his efforts discussed forensic issues related to SIDS, tissue banking, animal models in SIDS, brainstem studies in SIDS, genetic studies in SIDS, establishment of a SUDC registry, neuropathologic research in SUDC, and potential shared mechanisms underlying sudden and unexpected death in early life. The wide scope of the presentations crossed the disciplines of forensic pathology, pediatric pathology, neuropathology, neuroscience, physiology, genetics, and bereavement, and attest to Dr. Krous' far-reaching influence upon SIDS and SUDC research.


Asunto(s)
Muerte Súbita del Lactante/etiología , Muerte Súbita del Lactante/patología , Animales , Autopsia/normas , Investigación Biomédica , Tronco Encefálico/anomalías , Tronco Encefálico/patología , Muerte Celular , Congresos como Asunto , Epilepsia/complicaciones , Medicina Legal/normas , Humanos , Hipoxia-Isquemia Encefálica/patología , Lactante , Modelos Animales , Neuroglía/patología , Neuronas/patología , Sistema de Registros , Bancos de Tejidos
13.
J Physiol ; 589(Pt 21): 5247-56, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21911619

RESUMEN

Pet-1(-/-) mice with a prenatal, genetically induced loss of 5-hydroxytryptamine (5-HT, serotonin) neurones are compromised in their ability to withstand episodic environmental anoxia via autoresuscitation. Given the prenatal role of 5-HT neurones in the development of neural networks, here we ask if a postnatal loss of 5-HT neurones also compromises autoresuscitation. We treated neonatal rat pups at postnatal day (P)2-3 with an intra-cisternal injection of 5,7-dihydroxytryptamine (5,7-DHT; ~40 µg; n = 8) to pharmacologically lesion the 5-HT system, or vehicle (control; n = 14). At P7-10 we exposed unanaesthetized treated and control pups to 15 episodes of environmental anoxia (97% N(2), 3% CO(2)). Medullary 5-HT content was reduced 80% by 5,7-DHT treatment (P < 0.001). Baseline ventilation (V(E)), metabolic rate (V(O(2))), ventilatory equivalent (V(E)/V(O(2))), heart rate (HR), heart rate variability (HRV) and arterial haemoglobin saturation (S(aO(2))) were no different in 5-HT-deficient pups compared to controls. However, only 25% of 5-HT-deficient pups survived all 15 episodes of environmental anoxia, compared to 79% of control littermates (P = 0.007). High mortality of 5,7-DHT-treated pups was associated with delayed onset of gasping (P < 0.001), delayed recovery of HR from hypoxic-induced bradycardia (P < 0.001), and delayed recovery of eupnoea from hypoxic-induced apnoea (P < 0.001). Treatment with 5,7-DHT affected neither the gasping pattern once initiated, nor HR, V(E)/V(O(2)) or S(aO(2)) during the intervening episodes of room air. A significant increase in HRV occurred in all animals with repeated exposure, and in 5-HT-deficient pups this increase occurred immediately prior to death. We conclude that a postnatal loss of brainstem 5-HT content compromises autoresuscitation in response to environmental anoxia. This report provides new evidence in rat pups that 5-HT neurones serve a physiological role in autoresuscitation. Our data may be relevant to understanding the aetiology of the sudden infant death syndrome (SIDS), in which there is medullary 5-HT deficiency and in some cases evidence of severe hypoxia and failed autoresuscitation.


Asunto(s)
Hipoxia/fisiopatología , Neuronas Serotoninérgicas/patología , Serotonina/deficiencia , 5,7-Dihidroxitriptamina/farmacología , Animales , Animales Recién Nacidos , Tronco Encefálico/metabolismo , Femenino , Frecuencia Cardíaca , Masculino , Ratas , Respiración , Serotoninérgicos/farmacología
14.
J Appl Physiol (1985) ; 111(3): 825-33, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21680874

RESUMEN

Mice deficient in the transcription factor Pet-1⁻/⁻ have a ∼70% deficiency of brainstem serotonin [5-hydroxytryptamine (5-HT)] neurons and exhibit spontaneous bradycardias in room air at postnatal day (P)5 and P12 and delayed gasping in response to a single episode of anoxia at P4.5 and P9.5 (Cummings KJ, Li A, Deneris ES, Nattie EE. Am J Physiol Regul Integr Comp Physiol 298: R1333-R1342, 2010; and Erickson JT, Sposato BC. J Appl Physiol 106: 1785-1792, 2009). We hypothesized that at a critical age Pet-1⁻/⁻ mice will fail to autoresuscitate during episodic anoxia, ultimately dying from a failure of gasping to restore heart rate (HR). We exposed P5, P8, and P12 Pet-1⁻/⁻ mice and wild-type littermates (WT) to four 30-s episodes of anoxia (97% N2-3% CO2), separated by 5 min of room air. We observed excess mortality in Pet-1⁻/⁻ only at P8: 43% of Pet-1⁻/⁻ animals survived past the third episode of anoxia while ∼95% of WT survived all four episodes (P = 0.004). No deaths occurred at P5 and at P12, and one of six Pet-1⁻/⁻ mice died after the fourth episode, while all WT animals survived. At P8, dying Pet-1⁻/⁻ animals had delayed gasping, recovery of HR, and eupnea after the first two episodes of anoxia (P < 0.001 for each); death ultimately occurred when gasping failed to restore HR. Both high- and low-frequency components of HR variability were abnormally elevated in dying Pet-1⁻/⁻ animals following the first episode of anoxia. Dying P8 Pet-1⁻/⁻ animals had significantly fewer 5-HT neurons in the raphe magnus than surviving animals (P < 0.001). Our data indicate a critical developmental window at which a brainstem 5-HT deficiency increases the risk of death during episodes of anoxia. They may apply to the sudden infant death syndrome, which occurs at a critical age and is associated with 5-HT deficiency.


Asunto(s)
Apnea/metabolismo , Bradicardia/metabolismo , Tronco Encefálico/metabolismo , Frecuencia Cardíaca , Hipoxia/metabolismo , Mecánica Respiratoria , Serotonina/deficiencia , Muerte Súbita del Lactante/etiología , Animales , Animales Recién Nacidos , Apnea/genética , Apnea/fisiopatología , Bradicardia/genética , Bradicardia/fisiopatología , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/fisiopatología , Modelos Animales de Enfermedad , Genotipo , Humanos , Hipoxia/genética , Hipoxia/fisiopatología , Recién Nacido , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Recuperación de la Función , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
15.
J Physiol ; 589(Pt 8): 2055-64, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21486799

RESUMEN

Based on previous studies in adult animals, devoid of 5-HT neurones, showing altered thermoregulation in cold stress (4°C) and a reduced ventilatory response to CO2, we hypothesized that neonatal mice lacking 60-70% of their 5-HT neurones (Pet-1(-/-)) would have: (1) a reduced thermogenic response to a mild drop in ambient temperature (TA), (2) reduced V(E) and heart rate (HR) responses to mild cooling that reflect this reduced thermogenic response, and (3) a reduced ventilatory response to CO2 after postnatal day 12 (P12), when 5-HT neurones become chemosensitive in vitro. We first determined that a 60-70% loss of 5-HT-positive neurones results in a ~90% loss of 5-HT from the brainstems of Pet-1(-/-) animals. We then subjected Pet-1(-/-) and wild-type (WT) mice (N = 5) to mild environmental cooling (T(A) = 29°C) at ~P12. T(A) was initially held at 34°C for ~20 min, reduced to 29°C over 15 min and held for an additional 10 min at steady state, and then returned to 34°C. From 34°C to 29°C, there was a robust increase in V(O2) in P12WT, but not Pet-1(-/-) animals (68±19.9% versus -16±8%, respectively; P = 0.002). On average, body temperature (T(B)) dropped 1.1°C more in Pet-1(-/-) compared to WT animals (P = 0.03). HR remained unchanged in WT but dropped 22±2.3% in Pet-1(-/-) animals (P = 0.01). Genotype had no effect on tail temperature (T(T)), either at 34°C or 29°C. After cooling, values for V(O2) and HR of Pet-1(-/-) animals were no different to values predicted by Q10 effects alone, while values of WT animals were greater than predicted. V(E) increased in WT with cooling, while it decreased in Pet-1(-/-) animals (P = 0.002). Still, Pet-1(-/-) animals hyperventilated relative to WT (increased V(E)/V(O2)) irrespective of T(A) (P = 0.002). As tested in a separate group of pups, there was no difference in the ventilatory response to CO2 between WT and Pet-1(-/-) animals, either at P5 or P15. We conclude that during neonatal life in mouse pups: (1) brainstem 5-HT is critical for the thermogenic response to a mild drop in environmental temperature probably via a sympathetically-mediated increase in brown fat metabolism; (2) reduced thermogenesis probably contributes to the reduced HR and V(O2) observed with 5-HT deficiency; and (3) the presence of some brainstem 5-HT is sufficient for an appropriate ventilatory response to hypercapnia up until P15. Infants with reduced brainstem 5-HT could be prone to cardiovascular and respiratory abnormalities resulting from compromised thermogenesis.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Regulación de la Temperatura Corporal , Tronco Encefálico/metabolismo , Respuesta al Choque por Frío , Hipotermia/fisiopatología , Serotonina/deficiencia , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Regulación de la Temperatura Corporal/genética , Tronco Encefálico/crecimiento & desarrollo , Frío , Respuesta al Choque por Frío/genética , Genotipo , Frecuencia Cardíaca , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Hipotermia/genética , Hipotermia/metabolismo , Ratones , Ratones Noqueados , Fenotipo , Ventilación Pulmonar , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
16.
J Appl Physiol (1985) ; 110(2): 318-28, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20966190

RESUMEN

Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ∼45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P < 0.001) and had lower body temperatures at P15 (P < 0.001) and P25 (P < 0.05; females only). Oxygen consumption (Vo(2)) was unaffected. At P15, deficient pups had an altered breathing pattern and slower heart rates. At P25, they had significantly lower ventilation (Ve) and Ve-to-Vo(2) ratios in both air and 7% CO(2). The ventilatory response to CO(2) (% increase in Ve/Vo(2)) was significantly increased at P5 (males) and reduced at P15 and P25 (males and females). Deficient pups had 41-56% less medullary 5-HT (P < 0.01) compared with control pups, without a difference in 5-HT neuronal number. These data indicate important interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.


Asunto(s)
Tronco Encefálico/fisiopatología , Frecuencia Cardíaca , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Intercambio Gaseoso Pulmonar , Mecánica Respiratoria , Serotonina/metabolismo , Triptófano/deficiencia , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Tronco Encefálico/crecimiento & desarrollo , Proteínas en la Dieta/metabolismo , Femenino , Humanos , Recién Nacido , Embarazo , Ratas , Ratas Sprague-Dawley , Muerte Súbita del Lactante
17.
J Neurosci ; 30(37): 12466-73, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20844141

RESUMEN

Phox2b-expressing neurons of the retrotrapezoid nucleus (RTN), located in the ventrolateral brainstem, are sensitive to changes in PCO(2)/pH, have excitatory projections to the central respiratory rhythm/pattern generator, and their activation enhances central respiratory drive. Using in vivo (conscious and anesthetized rats) and in situ (arterially perfused rat brainstem-spinal cord preparations) models, we evaluated the functional significance of this neuronal population for both resting respiratory activity and the CO(2)-evoked respiratory responses by reversibly inhibiting these neurons using the insect peptide allatostatin following transduction with a lentiviral construct to express the G-protein-coupled Drosophila allatostatin receptor. Selective inhibition of the Phox2b-expressing neurons in the ventrolateral brainstem, including the RTN, using allatostatin was without effect on resting respiratory activity in conscious rats, but decreased the amplitude of the phrenic nerve discharge in anesthetized rats and the in situ rat preparations. Postinspiratory activity was also reduced in situ. In the absence or presence of the peripheral chemoreceptor input, inhibiting the Phox2b-expressing neurons during hypercapnia abolished the CO(2)-evoked abdominal expiratory activity in anesthetized rats and in situ preparations. Inspiratory responses evoked by rising levels of CO(2) in the breathing air were also reduced in anesthetized rats with denervated carotid bodies and conscious rats with peripheral chemoreceptors intact (by 28% and 60%, respectively). These data indicate a crucial dependence of central expiratory drive upon Phox2b-expressing neurons of the ventrolateral brainstem and support the hypothesis that these neurons contribute in a significant manner to CO(2)-evoked increases of inspiratory activity.


Asunto(s)
Tronco Encefálico/metabolismo , Espiración/fisiología , Proteínas de Homeodominio/fisiología , Inhalación/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Células Receptoras Sensoriales/fisiología , Factores de Transcripción/fisiología , Animales , Tronco Encefálico/química , Tronco Encefálico/citología , Dióxido de Carbono/fisiología , Encefalinas/fisiología , Proteínas de Homeodominio/genética , Masculino , Actividad Motora/fisiología , Neuronas/química , Neuronas/fisiología , Neuropéptidos/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Rombencéfalo/química , Rombencéfalo/citología , Rombencéfalo/metabolismo , Células Receptoras Sensoriales/química , Factores de Transcripción/genética
19.
Am J Physiol Regul Integr Comp Physiol ; 298(5): R1333-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20421636

RESUMEN

Neonatal rodents deficient in medullary serotonin neurons have respiratory instability and enhanced spontaneous bradycardias. This study asks if, in Pet-1(-/-) mice over development: 1) the respiratory instability leads to hypoxia; 2) greater bradycardia is related to the degree of hypoxia or concomitant hypopnea; and 3) hyperthermia exacerbates bradycardias. Pet-1(+/+), Pet-1(+/-), and Pet-1(-/-) mice [postnatal days (P) 4-5, P11-12, P14-15] were held at normal body temperature (T(b)) and were then made 2 degrees C hypo- and hyperthermic. Using a pneumotach-mask system with ECG, we measured heart rate, metabolic rate (Vo(2)), and ventilation. We also calculated indexes for apnea-induced hypoxia (total hypoxia: apnea incidence x O(2) consumed during apnea = microl.g(-1).min(-1)) and bradycardia (total bradycardia: bradycardia incidence x magnitude = beats missed/min). Resting heart rate was significantly lower in all Pet-1(-/-) animals, irrespective of T(b). At P4-5, Pet-1(-/-) animals had approximately four- to eightfold greater total bradycardia (P < 0.001), owing to an approximately two- to threefold increase in bradycardia magnitude and a near doubling in bradycardia incidence. Pet-1(-/-) animals had a significantly reduced Vo(2) at all T(b); thus there was no genotype effect on total hypoxia. At P11-12, total bradycardia was nearly threefold greater in hyperthermic Pet-1(-/-) animals compared with controls (P < 0.01). In both genotypes, bradycardia magnitude was positively related to the degree of hypopnea (P = 0.02), but there was no genotype effect on degree of hypopnea or total hypoxia. At P14-15, genotype had no effect on total bradycardia, but Pet-1(-/-) animals had up to seven times more total hypoxia (P < 0.001), owing to longer and more frequent apneas and a normalized Vo(2). We infer from these data that 1) Pet-1(-/-) neonates are probably not hypoxic from respiratory dysfunction until P14-15; 2) neither apnea-related hypoxia nor greater hypopnea contribute to the enhanced bradycardias of Pet-1(-/-) neonates from approximately P4 to approximately P12; and 3) an enhancement of a temperature-sensitive reflex may contribute to the greater bradycardia in hyperthermic Pet-1(-/-) animals at approximately P12.


Asunto(s)
Apnea/fisiopatología , Bradicardia/fisiopatología , Fiebre/fisiopatología , Insuficiencia Respiratoria/fisiopatología , Serotonina/deficiencia , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Apnea/genética , Apnea/patología , Tamaño Corporal/fisiología , Bradicardia/genética , Bradicardia/patología , Tronco Encefálico/anomalías , Modelos Animales de Enfermedad , Femenino , Fiebre/genética , Fiebre/patología , Genotipo , Frecuencia Cardíaca/fisiología , Humanos , Lactante , Masculino , Mesencéfalo/anomalías , Ratones , Ratones Mutantes , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/patología , Muerte Súbita del Lactante , Factores de Transcripción/metabolismo
20.
JAMA ; 303(5): 430-7, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20124538

RESUMEN

CONTEXT: Sudden infant death syndrome (SIDS) is postulated to result from abnormalities in brainstem control of autonomic function and breathing during a critical developmental period. Abnormalities of serotonin (5-hydroxytryptamine [5-HT]) receptor binding in regions of the medulla oblongata involved in this control have been reported in infants dying from SIDS. OBJECTIVE: To test the hypothesis that 5-HT receptor abnormalities in infants dying from SIDS are associated with decreased tissue levels of 5-HT, its key biosynthetic enzyme (tryptophan hydroxylase [TPH2]), or both. DESIGN, SETTING, AND PARTICIPANTS: Autopsy study conducted to analyze levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA); levels of TPH2; and 5-HT(1A) receptor binding. The data set was accrued between 2004 and 2008 and consisted of 41 infants dying from SIDS (cases), 7 infants with acute death from known causes (controls), and 5 hospitalized infants with chronic hypoxia-ischemia. MAIN OUTCOME MEASURES: Serotonin and metabolite tissue levels in the raphé obscurus and paragigantocellularis lateralis (PGCL); TPH2 levels in the raphé obscurus; and 5-HT(1A) binding density in 5 medullary nuclei that contain 5-HT neurons and 5 medullary nuclei that receive 5-HT projections. RESULTS: Serotonin levels were 26% lower in SIDS cases (n = 35) compared with age-adjusted controls (n = 5) in the raphé obscurus (55.4 [95% confidence interval {CI}, 47.2-63.6] vs 75.5 [95% CI, 54.2-96.8] pmol/mg protein, P = .05) and the PGCL (31.4 [95% CI, 23.7-39.0] vs 40.0 [95% CI, 20.1-60.0] pmol/mg protein, P = .04). There was no evidence of excessive 5-HT degradation assessed by 5-HIAA levels, 5-HIAA:5-HT ratio, or both. In the raphé obscurus, TPH2 levels were 22% lower in the SIDS cases (n = 34) compared with controls (n = 5) (151.2% of standard [95% CI, 137.5%-165.0%] vs 193.9% [95% CI, 158.6%-229.2%], P = .03). 5-HT(1A) receptor binding was 29% to 55% lower in 3 medullary nuclei that receive 5-HT projections. In 4 nuclei, 3 of which contain 5-HT neurons, there was a decrease with age in 5-HT(1A) receptor binding in the SIDS cases but no change in the controls (age x diagnosis interaction). The profile of 5-HT and TPH2 abnormalities differed significantly between the SIDS and hospitalized groups (5-HT in the raphé obscurus: 55.4 [95% CI, 47.2-63.6] vs 85.6 [95% CI, 61.8-109.4] pmol/mg protein, P = .02; 5-HT in the PGCL: 31.4 [95% CI, 23.7-39.0] vs 71.1 [95% CI, 49.0-93.2] pmol/mg protein, P = .002; TPH2 in the raphé obscurus: 151.2% [95% CI, 137.5%-165.0%] vs 102.6% [95% CI, 58.7%-146.4%], P = .04). CONCLUSION: Compared with controls, SIDS was associated with lower 5-HT and TPH2 levels, consistent with a disorder of medullary 5-HT deficiency.


Asunto(s)
Tronco Encefálico/química , Receptor de Serotonina 5-HT1A/análisis , Serotonina/deficiencia , Muerte Súbita del Lactante , Triptófano Hidroxilasa/análisis , Autopsia , Estudios de Casos y Controles , Femenino , Humanos , Ácido Hidroxiindolacético/análisis , Hipoxia , Lactante , Recién Nacido , Isquemia , Masculino , Factores de Riesgo , Serotonina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA